VSB-VMB

PN16 Two/Three-way Valves

MODELS		DN	Kvs	STROKE	
2 WAY	3 WAY	DIN	[m³/h]	[mm]	
VSB3	VMB3	3/4"	6,3		
VSB4	VMB4	1"	10		
VSB5	VMB5	1 1⁄4"	16	16 5	
VSB6	VMB6	1 ½"	22	16,5	
VSB8	VMB8	2"	30		
VSB8A	VMB8A		40		

APPLICATION AND USE

Two-way VSB and three-way VMB valves can be used either for control or fluid detection in air-conditioning, thermoventilation and heating plants, both environmental and industrial, and in machines for product thermal process.

Three-way valves should be used only as mixing valves; angle way should never be used for control purposes.

MANUFACTURING CHARACTERISTICS

The valve body is made of G25 cast iron. The plug is in brass with Contoured-type profile on direct way and V-port on angle way. The stem is in CrNi steel with threaded M8 end and female threaded connections. The stem packing is constituted by a EPDM O-ring with graphited teflon scraper rings.

NOTE: The valves are also available in the stainless steel plug version (profile and Kvs are the same of the brass plug). For further sales information, please contact our Sales Support.

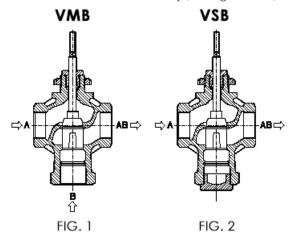
TECHNICAL CHARACTERISTICS

CHARACTERISTIC	DESCRIPTION						
Constructions		PN16					
Control characteristics		direct way equal-percentage, angle way linear (VMB)					
Leakage*	direct way 00,03% of Kvs, angle way 02% of Kvs (VMB)						
Connections	female threaded						
Stroke	16,5 mm (max 18,5 mm)						
Allowed fluids	max. temperature 150°C, min. temperature -10 °C (in case of ice on stem and gasl use the stem-heater, see actuators data sheets; is not applicable to V.B DN15 valv glycol added max 50%						
	saturated steam max. temperature 150 °C, max. pressure 250kPa (absolute value)						
Weight	see dimensions						

^{*} Leakage is measured according to the EN1349 standard.

ATTENTION: If V.B valves are assembled with MVB+spacer (MVBHT) the max. operating temperature is 140°C, while without spacer is 120°C. For other actuators the max. operating temperature is 150 °C.

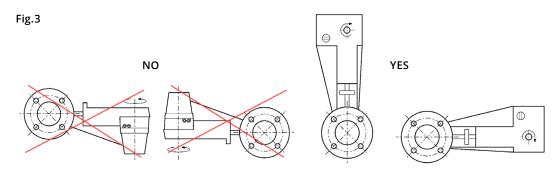
The performances stated in this sheet can be modified without any prior notice.


INSTALLATION

Before valves are mounted, make sure that pipes are clean, free from welding slags, that are perfectly lined up with valve body and not subjected to vibrations.

The valve can be mounted in any position except upside-down (for MVH actuators see Fig. 3).

While assembling, respect the flow directions indicated by the


letters located on the valve body (see Fig. 1 and 2) and the application schemes.

ACTUATORS

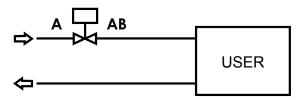
VSB and VMB are actuated by MVB, MVH, MVH56EA/C, MVE electrical actuators.

MOUNTING POSITIONS

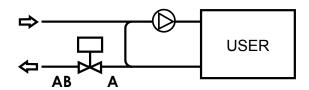
OPERATING

With the stem extended, the direct way is closed. With the stem retracted, the direct way is open.

ACCESSORIES

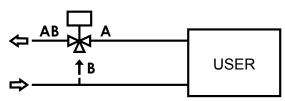

AG52	Valve linkage kit with MVE
AG62	Valve linkage kit with MVH
AG63	Valve linkage kit with MVE.S
GVB3	Insulation shell for DN 3/4" V.B3 valves
GVB4	Insulation shell for DN 1" V.B4 valves
GVB5	Insulation shell for DN 1 ¼" V.B5 valves
GVB6	Insulation shell for DN 1 1/2" V.B6 valves
GVB8	Insulation shell for DN 2" V.B8 valves
GVB8A	Insulation shell for DN 2" V.B8A valves

3 PIECES CAST IRON FITTINGS								
thread		fitting	seal					
а	b	code	code					
G3/4" F	G3/4" M	89948-02	89949-02					
G1" F	G1" M	89948-03	89949-03	ВА				
G1 ¼" F	G1 ¼" M	89948-04	89949-04					
G1 ½" F	G1 ½" M	89948-05	89949-05					
G2" F	G2" M	89948-06	89949-06					

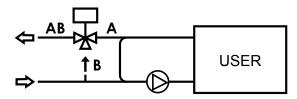

APPLICATION SCHEMES

VSB VALVES

a) Variable flow control when used



b) Constant flow when used in injection circuits

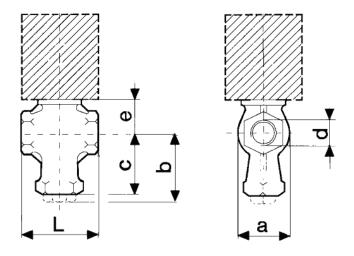


VMB VALVES

c) Variable flow mixing when used

d) Constant flow mixing when used in injection or tapping circuits

		MV		1VH MVHA/C*		MVB		MVE.06		MVE.10		MVE.15		MVE.22	
MODEL	DN	A-AB	B-AB	A-AB	B-AB	A-AB	B-AB	A-AB	B-AB	A-AB	B-AB	A-AB	B-AB	A-AB	B-AB
	3/4"	1600	1600	1600	1560	1080	260	1600	1310	1600	1600	1600	1600	1600	1600
	1"	1600	1600	1380	1030	680	170	1190	870	1600	1560	1600	1600	1600	1600
VSB VMB	1 1/4"	1600	1370	840	650	410	110	720	540	1210	980	1600	1540	1600	1600
VIVID	1 ½"	1170	990	590	470	290	80	500	390	860	710	1300	1110	1600	1600
	2"	870	750	440	350	210	60	370	290	640	540	960	840	1430	1263


 $100kPa = 1bar = 10m H_{2}O$

MAX REGULATION DIFFERENTIAL PRESSURE

The max regulation differential pressure, it means the pressure which can be used during the stroke, is conditioned by wear between seat and plug and by the performance guaranteed by the actuator for the evaluated valve. So we recommend not to overcome the differential pressure whose value corresponds to the minimum between 200kPa (maximum admitted value not to cause wear) and the one shown in the previous table (max close-off differential pressure).

NOTE: The max operating pressures at different temperatures for various PN classes must correspond to the following standards: UNI 1092-02 and UNI 12516-1.

DIMENSIONS [mm]

DN	d	V	SB-VM	В	VSB	VMB	Weight
		L	a	е	b	С	[kg]
3/4"	G 3/4"	85	54	34,5	79	67,5	1,1
1"	G 1"	95	62	39,5	83	72,5	1,5
1 1/4"	G 1 1⁄4″	108	70	43,5	90	78,5	2
1 ½"	G 1 ½"	120	81	51	98	85,5	2,7
2" (V.B8A)	G 2"	194	97	54,5	111	97	5
2" (V.B8)	G 2"	142	97	54,5	111	97	4

iSMA CONTROLLI S.p.A. - Via Carlo Levi 52, 16010 Sant'Olcese (GE) - Italy | support@ismacontrolli.com

^{*} with MVH.A in emergency valve closed, with MVH.C in emergency valve open.